STRUCTURAL HEALTH MONITORING USING STATISTICAL PATTERN RECOGNITION Manchester, UK, July 7 - 9, 2018

Time	Day 1 July 7 th	Time	Day 2 July 8 th
0.00 0.00	Desistantian 9 Introductions		
8:00-9:00 9:00-9:55	Registration & Introductions 1. Introduction (Farrar) - Course overview - Definition of Damage and SHM - Motivation for SHM, (NDE vs SHM) - Statistical pattern recognition paradigm - Historical overview: aerospace /civil/mechanical application	8:30-9:25	8. SHM Sensing Technologies I (Todd) - Excitation methods - Conventional force/pressure sensing - Conventional strain sensing - Conventional acceleration sensing - Acoustic emission sensing - Fiber optic sensing
9:55-10:20	2. Operational Evaluation (Farrar) - Economic/Life-safety justification for SHM - Defining the damage to be detected - Constraints on the SHM process - Case Study	9:25-10:20	9. SHM Sensing Technologies II (Flynn) - Piezoelectric materials - Commercial transducers/actuators - Custom transducers/actuators - Design consideration - Instrumentation techniques
10:20-10:40	Coffee Break	10:20-10:40	Coffee Break
10:40-11:45	3. Review of NDE Methods (Todd) - Ultrasound - Thermography - Eddy Current - Radiography - Limitations	10:40-11:45	10. SHM Sensing Technologies III (Todd) - Laser-based non-contact measurements - Video-based non-contact measurements - Robotic devices used for SHM sensing - Specialty sensors developed for SHM (comparative vacuum monitoring, pressurized aircraft tubing, HERT, Underwater system) - Emerging sensing and data visualization hardware
11:45-12:45	4. Sensing & Data Acquisition (Todd) - Sensor and sensor system overview - Sensor performance metrics - Signal conditioning issues - Telemetry and power - Embedded systems - Sensor network paradigms	11:45-12:45	11. Introduction to SHM Features (Farrar) - Define "features' in the context of SHM - Features in the context of detection theory - Sufficient statistic - Feature types - Examples (frequencies, mode shapes)
12:45-14:20	Lunch	12:45-14:20	Lunch
14:20-15:20	5. Signal Processing (Flynn) - Conditioning signals - Analyzing Signals - Time, Frequency &Time-frequency Methods - Correlation methods - Input-output methods	14:20-15:20	Ultrasonic Methods (Flynn) Acoustic emissions Impedance method Sensor self-diagnostics Guides waves Nonlinear acoustics Integration with other SHM technologies
15:20-15:40	Coffee Break	15:20-15:40	Coffee Break
15:40-16:40	6. Basic Statistics (Farrar) - Statistical moments/distributions - Density estimation - Confidence limits - Central limit theorem - Principal component analysis	15:40-16:40	13. Advanced Features (Todd) - Nonlinear response concepts - Waveform comparisons (nonlinear) - Nonlinear time series modeling - Residual errors - Chaotic interrogation methods
16:40-17:40	7. SHMTools Demonstration: Signal Analysis (Flynn) - Using SHMTools & mFUSE - Function & process assembly - Data import - Statistical analysis - Signal processing	16:40-17:40	SHMTools Demonstration (Flynn) Feature extraction with time series models Rotating machinery example Guided wave example

Time	Day 3 July 9 TH
8:30-9:25	15. Damage Detection: Unsupervised
	Learning Methods (Farrar)
	- Motivation for statistical decision analysis
	- Define supervised and unsupervised
	learning methods in the context of SHM
	- Cluster analysis
	- Outlier (Novelty) detection
	- Statistical process control
9:25-10:20	16. Damage Detection/Classification:
	Supervised Learning Methods (Todd)
	- Group classification & regression
	- Neural networks
	- Radial basis function
	- Support vector machines
10:20-10:40	- Automated feature selection Coffee Break
10:20-10:40 10:40-11:45	
10.40-11.43	17. Data Normalization (Farrar) -Environmental/operational effects on SHM
	-Parametric modeling environmental effects
	-Look-up table technique
	-Machine learning techniques
	-SHM system design for normalization
11:45-12:45	18. SHM System Design I: Detection
	and Location (Todd)
	- Bayesian risk framework
	- Classical detection theory
	- Detector design
40.45.44.00	- Detection/location examples
12:45-14:20	Lunch
14:20-15:20	19. SHM System Design II:
	Optimization and Robustness (Todd)
	- Probability of detection
	- Design examples
	- Robustness assessment - Comparative study
15:20-15:40	Break
15:40-16:40	20. SHMTools Demonstration
13.40-10.40	Detection & Classification (Flynn)
	- Outlier detection
	- Data normalization
	- Supervised learning example
16:40-17:30	21. Fundamental Axioms & Closing
	Remarks (Farrar)
	- Recap the statistical pattern recognition
	paradigm
	- Fundamental axioms of SHM
	- Other sources of information
	- Course survey